| |
1 # Allocator |
| |
2 |
| |
3 The allocator interface provides a mechanism to implement own custom allocators |
| |
4 that can also be used in many other function in UCX. |
| |
5 |
| |
6 A default allocator implementation using the stdlib functions is |
| |
7 available via the global symbol `cxDefaultAllocator` |
| |
8 and UCX also provides a [memory pool](mempool.h.md) implementation. |
| |
9 You are free to add additional own custom implementations. |
| |
10 A general sketch that illustrates how to do this can be found [below](#custom-allocator). |
| |
11 |
| |
12 ## Overview |
| |
13 |
| |
14 ```C |
| |
15 #include <cx/allocator.h> |
| |
16 |
| |
17 void *cxMalloc(const CxAllocator *allocator, size_t n); |
| |
18 |
| |
19 void *cxCalloc(const CxAllocator *allocator, |
| |
20 size_t nmemb, size_t size); |
| |
21 |
| |
22 void *cxRealloc(const CxAllocator *allocator, void *mem, size_t n); |
| |
23 |
| |
24 void *cxReallocArray(const CxAllocator *allocator, void *mem, |
| |
25 size_t nmemb, size_t size); |
| |
26 |
| |
27 int cxReallocate(const CxAllocator *allocator, void **mem, size_t n); |
| |
28 |
| |
29 int cxReallocateArray(const CxAllocator *allocator, void **mem, |
| |
30 size_t nmemb, size_t size); |
| |
31 |
| |
32 void cxFree(const CxAllocator *allocator, void *mem); |
| |
33 |
| |
34 int cx_reallocate(void **mem, size_t size); |
| |
35 |
| |
36 int cx_reallocatearray(void **mem, size_t nmemb, size_t size); |
| |
37 |
| |
38 // predefined allocator that uses stdlib functions |
| |
39 CxAllocator *cxDefaultAllocator; |
| |
40 ``` |
| |
41 |
| |
42 > All UCX functions that are not _explicitly_ designed for taking an allocator argument |
| |
43 > (recognizable by a `_a` suffix in the function's name) do support a `NULL` argument |
| |
44 > in which case the `cxDefaultAllocator` will be used. |
| |
45 |
| |
46 ## Description |
| |
47 |
| |
48 The functions `cxMalloc()`, `cxCalloc()`, `cxRealloc()`, `cxReallocArray()`, and `cxFree()` |
| |
49 invoke the memory management functions specified in the `allocator` and should behave like |
| |
50 their respective stdlibc pendants. |
| |
51 Implementations of the allocator interface are strongly encouraged to guarantee this behavior, |
| |
52 most prominently that invocations of `cxFree()` with a `NULL`-pointer for `mem` are ignored |
| |
53 instead of causing segfault error. |
| |
54 |
| |
55 Additionally, UCX provides the functions `cxReallocate()` and `cxReallocateArray()`, as well as |
| |
56 their independent pendants `cx_reallocate()` and `cx_reallocatearray()`. |
| |
57 All those functions solve the problem that a possible reallocation might fail, |
| |
58 leading to a quite common programming mistake: |
| |
59 |
| |
60 ```C |
| |
61 // common mistake - mem will be lost hen realloc() returns NULL |
| |
62 mem = realloc(mem, capacity + 32); |
| |
63 if (mem == NULL) // ... do error handling |
| |
64 ``` |
| |
65 |
| |
66 The above code can be replaced with `cx_reallocate()` which keeps the pointer intact and returns an error code instead. |
| |
67 |
| |
68 ```C |
| |
69 // when cx_reallocate() fails, mem will still point to the old memory |
| |
70 if (cx_reallocate(&mem, capacity + 32)) // ... do error handling |
| |
71 ``` |
| |
72 |
| |
73 > Please pay special attention to always use `cxFree()` and the `cxRealloc()`-family of functions |
| |
74 > with the **same** allocator that was used to allocate the memory. |
| |
75 {style="warning"} |
| |
76 |
| |
77 ## Custom Allocator |
| |
78 |
| |
79 If you want to define your own allocator, you need to initialize the `CxAllocator` structure |
| |
80 with a pointer to an allocator class (containing function pointers for the memory management |
| |
81 functions) and an optional pointer to custom data. An example is shown below: |
| |
82 |
| |
83 ```c |
| |
84 |
| |
85 struct my_allocator_state { |
| |
86 // ... some internal state ... |
| |
87 }; |
| |
88 |
| |
89 static cx_allocator_class my_allocator_class = { |
| |
90 my_malloc_impl, |
| |
91 my_realloc_impl, // all these functions are somewhere defined |
| |
92 my_calloc_impl, |
| |
93 my_free_impl |
| |
94 }; |
| |
95 |
| |
96 CxAllocator create_my_allocator(void) { |
| |
97 CxAllocator alloc; |
| |
98 alloc.cl = &my_allocator_class; |
| |
99 struct my_allocator_state *state = malloc(sizeof(*state)); |
| |
100 // ... initialize state ... |
| |
101 alloc.data = state; |
| |
102 return alloc; |
| |
103 } |
| |
104 |
| |
105 void destroy_my_allocator(CxAllocator *al) { |
| |
106 struct my_allocator_state *state = al->state; |
| |
107 // ... destroy state -- |
| |
108 free(state); |
| |
109 } |
| |
110 ``` |
| |
111 |
| |
112 When you are implementing |
| |
113 |
| |
114 ## Destructor Functions |
| |
115 |
| |
116 The `allocator.h` header also declares two function pointers for destructor functions. |
| |
117 |
| |
118 ```C |
| |
119 typedef void (*cx_destructor_func)(void *memory); |
| |
120 typedef void (*cx_destructor_func2)(void *data, void *memory); |
| |
121 ``` |
| |
122 |
| |
123 The first one is called _simple_ destructor (e.g. in the context of [collections](collection.h.md)), |
| |
124 and the second one is called _advanced_ destructor. |
| |
125 The only difference is that you can pass additional custom `data` to an advanced destructor function. |
| |
126 |
| |
127 Destructor functions play a vital role in deep de-allocations. |
| |
128 Another scenarios, besides destroying elements in a collection, are the de-allocation of objects |
| |
129 stored in a [memory pool](mempool.h.md) or de-allocations of deeply nested [JSON](json.h.md) objects. |
| |
130 |
| |
131 > Destructor functions are not to be confused with `free()`-like functions. |
| |
132 > The fundamental differences are that |
| |
133 > * it is not safe to pass `NULL` to a destructor function |
| |
134 > * a destructor may only de-allocate the contents inside an object but not the object itself, depending on context |
| |
135 > |
| |
136 {style="note"} |
| |
137 |
| |
138 > For example, when you are using a [list](list.h.md) that stores elements directly, a destructor function |
| |
139 > assigned to that collection may only destroy the element's contents but must not deallocate the element's memory. |
| |
140 > On the other hand, when the list is storing just pointers to the elements, you _may_ want the destructor |
| |
141 > function to also de-allocate the element's memory when the element is removed from that list. |
| |
142 |
| |
143 <seealso> |
| |
144 <category ref="apidoc"> |
| |
145 <a href="https://ucx.sourceforge.io/api/allocator_8h.html">allocator.h</a> |
| |
146 </category> |
| |
147 </seealso> |